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Abstract
We investigate the transitions of ground states induced by zero momentum (ZM) coupling in
pseudospin-1/2 Rashba spin–orbit coupled Bose–Einstein condensates confined in a harmonic
trap. In a weak harmonic trap, the condensate presents a plane wave (PW) state, a stripe state
or a spin polarized ZM state, and the particle distribution of the stripe state is weighted equally
at two points in the momentum space without ZM coupling. The presence of ZM coupling
induces an imbalanced particle distribution in the momentum space, and leads to the decrease
of the amplitude of the stripe state. When its strength exceeds a critical value, the system
experiences the transition from stripe phase to PW phase. The boundary of these two phases is
shifted and a new phase diagram spanned by the ZM coupling and the interatomic interactions
is obtained. The presence of ZM coupling can also achieve the transition from ZM phase to
PW phase. In a strong harmonic trap, the condensate exhibits a vortex lattice state without ZM
coupling. For the positive effective Rabi frequency of ZM coupling, the condensate is driven
from a vortex lattice state to a vortex-free lattice state and finally to a PW state with the
increase of coupling strength. In addition, for the negative effective Rabi frequency, the
condensate is driven from a vortex lattice state to a stripe state, and finally to a PW state. The
stripe state found in the strong harmonic trap is different from that in previous works because
of its nonzero superfluid velocity along the stripes. We also discuss the influences of the ZM
coupling on the spin textures, and indicate that the spin textures are squeezed transversely by
the ZM coupling.

Keywords: Bose–Einstein condensates, spin–orbit coupling, zero momentum coupling,
transitions of groud states
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1. Introduction

The realization of the spin–orbit (SO) coupling in Bose–
Einstein condensates (BECs) [1] provides us opportunities to
study the SO effects in ultracold atoms. It also provides us an
experimental platform to simulate and study the SO effects
in condensed-matter systems by manipulating cold atoms,

as the SO coupling is crucial for spin Hall effects [2, 3],
spintronics [4, 5] and topological insulators [6–8]. The SO
coupling in BECs has attracted the attention of a great deal of
researchers because almost all parameters of the system can be
controlled. Under the competition among the SO coupling, the
interatomic interactions, the external potential and the rotation,
some novel ground-state phases have been predicted, such as
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plane wave (PW) phases, stripe phases, vortex lattice (VL)
phases, and giant vortex [9–23]. These nontrivial phases have
greatly enriched the ground state phases of the BEC system.

As we known, multi-component BECs confined in a
single well with a coherent coupling can be realized in
experiments by performing an external driving field [24, 25],
and will give rise to many interesting phenomenons, such
as immiscibility–miscibility transition, formation of vortex
molecules, internal Josephson junctions and so on [26–30].
In addition, there has been a large experimental progress
about BECs in the synthetic effective magnetic fields that
combined Raman coupling with radiofrequency coupling [31].
In the previous works about SO coupled BECs, Wang et al
concluded that with a weak harmonic trap, the condensate
presents the PW phase (g > g12) or stripe phase (g < g12),
depending on the competition between the intra- and inter-
component interactions [9]. Furthermore, Yu indicated that
in addition to these two phases, there exists another phase,
namely a spin polarized zero momentum (ZM) phase [32]. For
the condensate with a strong harmonic trap, the VL phases
were theoretically predicted by Hu et al [17]. These works,
however, consider just only one kind of coupling on BECs.
We are inspired to research whether there will exist novel
structures or new phenomenons when we consider adding
another coupling which named ZM coupling contrasting to
Raman coupling to SO coupled systems.

The aim of this paper is to study the effect of ZM coupling
on pseudospin-1/2 Rashba SO coupled BECs confined in a
harmonic trap. Firstly, we consider the condensate with a
weak harmonic trap. The ZM coupling induces an imbalanced
particle distribution of the stripe state in k-space, and this
imbalance leads to the amplitude of spin density stripe
decrease. So we can realize the adjusting of the stripe’s
amplitude by performing a ZM coupling on the system. When
the strength of ZM coupling exceeds a critical value, the
condensate experiences the transition from a stripe phase to a
PW phase. The phase boundary between the stripe phase and
the PW phase is shifted and the scope of parameters of the
PW phases is expanded. In addition, the ZM coupling can also
achieve the transition from spin polarized ZM phase to PW
phase.

We also study the condensate with a strong harmonic
trap. In the absence of ZM coupling, vortices appear in pairs
in each component forming a honeycomb vortex–antivortex
(VA) lattice, and their arrangement leads to three kinds of spin
textures: ±half-quantum vortices (HQV) and spin-2 texture.
We turn on the ZM coupling from the vortex state, and
respectively discuss the impacts of the positive and negative
effective Rabi frequency on the structures of the ground
states. For the positive effective Rabi frequency, the vortex
and antivortex in each component are close to and finally
annihilate each other with the increasing of ZM-coupling
strength, forming a vortex-free lattice (VFL) state. With the
further increase of ZM coupling, the condensate becomes the
PW state finally. We also investigate the pseudospin textures
and find that the spin density vectors pointing to the x direction
are restrained, and the spin density vectors cover the Bloch
sphere from a complete sphere to an incomplete one and

finally to a point with the increase of ZM coupling. For the
negative effective Rabi frequency, the condensate experiences
the transition from a VL state to a stripe state. This stripe
state is different from that in previous works because of its
nonzero superfluid velocity along the stripes. As ZM coupling
increases further, the condensate becomes the PW state finally.

This paper is organized as follows: in section 2, we
introduce the model Hamiltonian and investigate the single-
particle ground state of the system. In section 3, we investigate
the mean-field ground states of the SO and ZM coupled BECs.
With a weak and strong harmonic trap, the transitions of
the ground states driven by ZM coupling are numerically
studied, respectively. The experimental proposal is discussed
in section 4, and the conclusions are given in section 5.

2. Model Hamiltonian and single-particle ground
state

We consider a pseudospin 1/2 BEC in a quasi-2D harmonic
trap V = 1

2 m
[
ω2

⊥(x2 + y2) + ω2
z z2

]
with Rashba SO and ZM

coupling, where ωz/ω⊥ = η � 1. The model Hamiltonian
can be given by H = H0 + Hint,

H0 =
∫

dr�†

[
�

2k2

2m
+ V + κ�k · �σ + λσx�

]
�, (1a)

Hint =
∫

dr
[g11

2
|ψ1|4 + g22

2
|ψ2|4 + g12|ψ1|2|ψ2|2

]
, (1b)

where � = [ψ1, ψ2]T is normalized as
∑

j

∫ ∣∣ψ j

∣∣2
dr = N,

and N is the total number of particles in two components.
k = {

kx, ky
}

denotes xy-PW vectors, and �σ = {
σx, σy

}
are the

2 × 2 Pauli matrices. κ denotes the strength of SO coupling,
and λ is the effective Rabi frequency to denote the strength of
ZM coupling. g jk = 4π�

2a jk/m, ( j, k = 1, 2) represents the
intra-(g11, g22) or inter-component (g12) interaction strength
characterized by the s-wave scattering length ajk and particle
mass m.

In the absence of trap, the single-particle Hamiltonian
presents two eigenenergy branches

E± = �
2k2

2m
±

√
(κ�kx + λ�)2 + (κ�ky)2, (2)

with SO and ZM coupling. The single-particle ground state
energy is in the E− branch. We know that if we only consider
the SO coupling in our system, i.e. λ = 0, the single-particle
ground state is infinitely degenerate and characterized by a
continuous momentum k along the azimuthal direction, as
shown in figure 1(a), satisfying k2

x + k2
y = m2κ2/�

2. With
considering the condensate with SO and ZM coupling, we
find that the rotating symmetry of the Hamiltonian is broken,
and the single-particle energy has only one minimum at(
κ m

�
, 0

)
, as shown in figure 1(b). Obviously, it is the ZM

coupling that changes the single-particle ground state from
an infinitely degenerate state into a unique state and pin
the direction of PW in the x direction. When increasing the
strength of ZM coupling, this ground state becomes more and
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(a) (b)

Figure 1. Schematic diagram of single-particle energy–momentum dispersion relations for (a) λ = 0 and (b) λ �= 0. When the ZM coupling
is present, the single-particle ground state energy has a minimum at

(
κ m

�
, 0

)
, instead of a continuous circle of degenerate states.
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Figure 2. The transition of the condensate from the stripe state to the PW state with the increase of λ. The density profiles of ψ1 (left), the
corresponding phases (middle), and the momentum distributions (right) for (a) λ = 0, (b) λ = 0.4ω⊥ and (c) λ = 2ω⊥. The intra- and
inter-component interactions are chosen as g̃11 = g̃22 = g̃ = 50, g̃12 = 175, and the strength of SO coupling is fixed at κ = 5

√
�ω⊥/m. The

phase transition point between these two phases is λ = 1.5ω⊥ under this group of parameters.

more energetically separated from the other states on the ring
k2

x + k2
y = m2κ2/�

2. In addition, for the case that λ < 0,

which corresponds to the fact that the change of λ → −λ

is tantamount to ψ2 → −ψ2, x → −x and y → −y, the
single-particle energy has also one minimum at

(−κ m
�
, 0

)
.

3. Mean-field many-body ground state

In this section, we numerically study the mean-field many body
ground states of the system. After rescaling the parameters
r̃ = r/a0, t̃ = ω⊥t, Ẽ± = E±/�ω⊥, λ̃ = λ/ω⊥,
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κ̃ = κ
√

m
�ω⊥

, k̃x = kxa0,k̃y = kya0, and ψ̃ j =
ψ ja0/

√
N respectively, where a0 = √

�/mω⊥, then we obtain
the two-dimensional dimensionless coupled Gross–Pitaevskii
equations:

i
∂ψ̃1

∂ t̃
=

[
−1

2
∇̃2 + Ṽ + (

g̃11|ψ̃1|2 + g̃12|ψ̃2|2
)]

ψ̃1

−κ̃ (i∂x̃ + ∂ỹ)ψ̃2 + λ̃ψ̃2, (3a)

i
∂ψ̃2

∂ t̃
=

[
−1

2
∇̃2 + Ṽ + (

g̃12|ψ̃1|2 + g̃22|ψ̃2|2
)]

ψ̃2

−κ̃ (i∂x̃ − ∂ỹ)ψ̃1 + λ̃ψ̃1, (3b)

where the 2D dimensionless effective interaction coefficients
are defined as g̃ jk = 2

√
2πηNajk/a0, by approximating the z

dependence of the wave function as a single-particle ground
state [33]. Furthermore, the wave functions are normalized as∑

j

∫ |ψ̃ j|2 dx̃ dỹ = 1.

In the following, we will discuss the effect of ZM coupling
on the SO coupled BECs with a weak harmonic trap and a
strong harmonic trap, respectively. It should be noted that the
strength of the trap is relative to the interatomic interactions,
that is, the condensate with a strong harmonic trap requires that
the harmonic trap energy �ω⊥ is higher than the characteristic
interaction energy g̃ jk�ω⊥

(
i.e.g̃ jk < 1

)
, and the condensate

with a weak harmonic trap satisfies g̃ jk � 1.

3.1. The condensate with a weak harmonic trap

We numerically solve equations (3a) and (3b) using the
imaginary time propagation method [34, 35] to obtain the
ground state of the condensate. As we know, for the case
that the ZM coupling is absent, the condensate with a weak
harmonic trap

(
g̃ jk � 1

)
presents two phases classified by

the competition of the intra- and inter-component interactions
[9]: when g > g12, the condensate presents the PW phase,
and when g12 > g, the condensate presents the stripe phase.
Recently, it was indicated that in addition to these two phases,
there exists another phase, namely a spin polarized ZM phase
when g12 > g [32]. In this section, we will study the effects of
ZM coupling on these three phases, respectively. We choose
the intra- and inter-component interactions of the condensate
as g̃11 = g̃22 = g̃ = 50, g̃12 = 175, satisfying g̃2

12 >

g̃11g̃22 and corresponding to two immiscible components. The
strength of the SO coupling is chosen as κ = 5

√
�ω⊥/m.

Without ZM coupling, the condensate presents a stripe state,
as shown in figure 2(a). It is a superposition of two PW states
with opposite momentums. The density of each component
has a π/κ periodic modulation in space, and the total density
is always a constant.

We define the equilibrium density difference d =∣∣ψ j (kR)
∣∣2 − ∣∣ψ j (kL)

∣∣2
with ψ j (kR)

[
ψ j (kL)

]
describing the

momentum state with kx = κ [−κ]. When the ZM coupling
is present, the momentum distribution of particles becomes
imbalanced, increased in the ψ j (kR)

[
ψ j (kL)

]
state and

decreased in the ψ j (kL)
[
ψ j (kR)

]
state for λ > 0 [λ < 0]. The

corresponding wave function is a superposition of a standing
wave and a PW, resulting that the amplitude of the spin density
stripe decreases, as shown in figure 2(b) with λ = 0.4ω⊥.
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Figure 3. (a) The cross sections of the density |ψ1|2 with γ = 3.5
for different λ along the x-axis at y = 0, here we rotate the direction
of the stripes parallel to the x-axis. (b) The degrees s of phase
separation and the differences d between the number of particles
distributed at the two k points corresponding to the different ZM
coupling |λ|. For λ > 0 (λ < 0), d indicates the particle number on
the right (left) minus the one on the left (right). (c) Mean field
phase diagram spanned by γ and λ with parameters g̃ = 50,
κ = 5

√
�ω⊥/m, where γ = g̃12/g̃. A comparison between the phase

boundary obtained by numerical calculation (blue line) and the
function |λ| = −0.025γ 2 + 0.69γ − 0.66 (black line).

This state can be understood as an intermediate state between
the stripe state and the PW state. The effect of ZM coupling
on each component is similar, so we only show the density
profile of one component in this section. With increasing the
coupling strength, the imbalance of particle distribution in k-
space is intensified, so the standing wave gradually fades out
and the amplitude of the stripe gradually decreases, as shown
in figure 3(a). The melting of the spin density stripe can also
be understood from that the ZM coupling induces an effective
attraction interaction between the two components [27, 36].
Beyond |λc| � 1.5ω⊥, all particles distribute at

(
κ m

�
, 0

)
in k-

space and the spin density stripe completely disappears, then
the condensate experiences the transition from stripe phase
to PW phase, as shown in figure 2. Note that the density
distribution changes with |λ| , and the direction of PW is
determined by the sign of λ. In fact, the transitions from stripe
phase to PW phase is accompanied by the transition from phase
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Figure 4. The vectorial plots of the pseudospin S projected onto the x–y plane for (a) λ = 0, (b) λ = 0.4ω⊥, corresponding to figures 2(a)
and (b), respectively. The colours ranging from blue to red describe the values of the axial spin Sz from −1 to 1. (c) and (d) are the
projections of pseudospin density vectors of (a) and (b) on the Bloch sphere, respectively.

separation to phase mixture. For a quantitative description of
the degree of phase separation, we can use a dimensionless
metric

s = 1 − 〈ρ1ρ2〉(〈
ρ2

1

〉〈
ρ2

2

〉)1/2
, (4)

where ρ j ( j = 1, 2) is the density of the jth component, and
< . . . > is a spatial average [1]. s = 0 denotes complete phase
mixture and s = 1 denotes complete phase separation.

Figure 3(b) shows the dependence of the degree of phase
separation s and the equilibrium density difference d on the
strength of ZM coupling |λ|. We can see that two components
are strongly separated at the small λ, and s dramatically
decreases with the increase of |λ|. When |λ| > |λc| � 1.5ω⊥,
s � 0 and two components present a mixed state with
identical and symmetric density distributions. The equilibrium
density difference d increases with the increase of |λ|, and
when |λ| > |λc| � 1.5ω⊥, all particles distribute in single
momentum state so d becomes a constant.

We know that the direction of spin density stripe is chosen
spontaneously in the x–y plane without ZM coupling. For later
convenience, we define the direction of the stripe perpendicular
to the propagation directions of PWs. With increasing the
strength of ZM coupling, the direction of the spin density
stripe gets closer and closer to the y direction, and eventually
is pinned in the y direction, and the direction of the PW in the
PW phase is pinned in the x direction, as shown in figure 2.
This phenomenon can be understood from the single particle
ground state that ZM coupling energetically pins the direction
of the PW in x direction.

For simplicity, we define γ = g̃12/g̃, and assume g̃ = 50.

The strength of SO coupling is fixed at κ = 5
√

�ω⊥/m. The

phase diagram spanned by |λ| and γ is presented in figure 3(c).
Fitting these numerical phase boundary points, we find that
the boundary in figure 3(c) can be presented by a function
|λ| = −0.025γ 2 + 0.69γ − 0.66, where g̃ = 50 is fixed.
We can see that the ZM coupling makes the phase boundary
between the PW phase and the stripe phase shift, in other
words, we can obtain the PW phase even for g̃12 > g̃. So
without changing other conditions, the phase transition from
stripe phase to PW phase can be realized by increasing the
strength of ZM coupling.

We know that the spinor nature of multi-component
condensates can be described by introducing pseudospin, and
the spinor order parameter of two-component BECs allows
us to analyse this system as a pseudospin-1/2 BEC. The
pseudospin density vector is defined as S = �†σ�/ |�|2 .

We decompose it as⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Sx = 2
|ψ1||ψ2|

|�|2 cos(θ1 − θ2),

Sy = −2
|ψ1||ψ2|

|�|2 sin(θ1 − θ2),

Sz = (|ψ1|2 − |ψ2|2
)
/|�|2,

(5)

where θ j is the phase of the wave function ψ j and the modulus
of the total spin is |S| = 1. Figures 4(a) and (b) show the spin
textures of the stripe phase with different λ, where we rotate
the direction of spin density stripe in figures 2(a) and (b) to
the y-axis. From figure 4(a) we can see that the stripe phase
presents a spin spiral state when ZM coupling is absent. ψ1

corresponds to the up component of the spin-1/2 spinor and ψ2

corresponds to its down component. At the interfaces of the
two components, the spin density vectors flip from up to down
forming a train of domain walls in the type of the classical
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Figure 5. The transition of the condensate from the ZM state to the PW state with the increase of λ. The density profiles of (a) ψ1, (b) ψ2

with λ = 0. Furthermore, the density profiles of (c) ψ1, (d) ψ2 with λ = 3ω⊥. (e) The polarization M corresponding to the different ZM
coupling, and the insets (i), (ii), (iii) and (iv) present the momentum distributions corresponding to (a), (b), (c) and (d). The intra- and
inter-component interactions are chosen as g̃11 = g̃22 = g̃ = 50, g̃12 = 175, and the strength of SO coupling is fixed at κ = 0.5

√
�ω⊥/m.

Bloch wall. The spin orientation in the x–y plane depends
on the relative phase, and can be represented by an azimuthal
angle α = arctan(Sy/Sx) = θ2−θ1. For each component of the
stripe phase, the periodic density modulation is assumed along
the x direction, so the curvature of the density in the y direction
can be neglected in the Thomas–Fermi approximation. In
addition, from the second plot in figure 2(a) we can see
that the phase changes alternately between two constants in
the central region, so the curvature of the phase is 0. In the
edge region, the non zero curvature of the phase is caused by
numerical error. We ignore the non zero curvature of the phase,
because the particle distribution is almost zero in the edge
region, and we only care about the region of the centralized

particles’ distribution. So with replacing ψ j = √
ρ j eiθ j , we

obtain ∂y
√

ρ j = 0 and ∂xθ j = ∂yθ j = 0. Substituting them
into the last two terms of equation (1a), we obtain E =∫

dr
{
2κ

√
ρ2∂x

√
ρ1 sin (θ1 − θ2)

}
. Minimizing the energy, we

obtain the azimuthal angle α = π
2 for ∂x

√
ρ1 > 0, and α = −π

2
for ∂x

√
ρ1 < 0, thus the spin density vector forms the spin

flipping as shown in figure 4(a).
When ZM coupling is present, the spin density vectors

are tilted towards the x direction at some angle, and the
texture becomes a periodic wavy spin spiral, as shown in
figure 4(b). The curvature of the density in the y direction can
also be neglected. When the momentum distribution at the two
points becomes seriously imbalanced, the wave function can
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Figure 6. The density profiles (first line), the phase profiles (second line) and the momentum distributions (third line) of the ground state
with different λ. (a) λ = −0.1ω⊥, (b) λ = −0.04ω⊥, (c) λ = −0.02ω⊥, (d) λ = 0, (e) λ = 0.04ω⊥ and (f) λ = 0.2ω⊥. Increasing |λ| from
the initial VL state, (d) → (e) → (f), the condensate experiences the transitions from VL state to VFL state and finally to PW state, with the
critical values λ = 0.03ω⊥ and λ = 0.1ω⊥. (d) → (c) → (b) → (a), the condensate experiences the transitions from the VL state to the
stripe state and finally to the PW state with the critical values λ = −0.015ω⊥ and λ = −0.06ω⊥. The intra- and inter-component
interactions are chosen as g̃11 = g̃22 = g̃ = 0.2, g̃12 = 0.3, and the strength of SO coupling is fixed at κ = 20

√
�ω⊥/m.

be approximated as a PW, so the curvature of the phase in x
direction can be approximated as the SO coupling strength
κ . So we obtain ∂y

√
ρ j = 0, ∂xθ j � κ and ∂yθ j = 0.

Substituting them into the last two terms of equation (1a),
and using the auxiliary angle formula of the trigonometric
function, we obtain E = ∫

dr {A sin (θ1 − θ2 + β)}, where

A =
√

4κ2ρ2
(
∂x

√
ρ1

)2 + 4
(
κ2 + λ

)2
ρ1ρ2, and β = nπ +

arctan
2(κ2+λ)ρ1

κ∂xρ1
, (n = 0,±1,±2, . . .) is an auxiliary angle.

We choose θ1 − θ2 + β = −π
2 to minimize the energy,

so the azimuthal angle becomes α = π
2 + β, where β =

arctan
2(κ2+λ)ρ1

κ∂xρ1
for ∂xρ1 > 0; and β = −π + arctan

2(κ2+λ)ρ1

κ∂xρ1

for ∂xρ1 < 0. Note that sin β = 2
√

ρ1ρ2
(
κ2 + λ

)
/A is always

positive, soα is limited in range
(−π,−π

2

)
or

(
π
2 , π

)
and

varies periodically, as shown in figure 4(b). With the increase
of λ, the spin density vectors become more tilted and topple
completely in the end, accompanied by the phase transition
from stripe phase to PW phase. At this point, ∂xρ1 = 0, β = π

2
and α = π, all spin density vectors are aligned along the
opposite direction of the x-axis. That is because that the ZM
frequency may be regarded as a transverse (pseudo)magnetic
field that aligns the spin along the x-axis. For the case that
λ < 0, the spin density vectors tilt in the opposite directions.

The projections of the spin density vectors in figures 4(a)
and (b) onto the surface of a Bloch sphere are shown in
figures 4(c) and (d), respectively. We can see that when λ = 0,
the spin density vectors just cover the sphere on a meridian in
the y–z plane. With increasing λ, they cover the sphere on a
circle which is parallel to the y–z plane with a smaller radius.
As λ increases further, the circle shrinks gradually to a point
at the surface of the Bloch sphere.

Keeping the intra- and inter-component interactions in
figure 2 unchanged, i.e. g̃11 = g̃22 = g̃ = 50, g̃12 =
175, and choosing quite a weak SO-coupling strength, e.g.
κ = 0.5

√
�ω⊥/m, we obtain a spin polarized ZM phase

when the ZM coupling is absent. The condensate is fully
polarized and occupies ZM, i.e. the polarization M =∫ [|ψ1|2 − |ψ2|2

]
dr/

∫ [|ψ1|2 + |ψ2|2
]

dr = 1 and k = 0
as shown in figures 5(a), (b) and (e). The presence of ZM
coupling induces an effective attraction between the two
components, so half of the atoms shift from the ψ1 state to
the ψ2 state and the condensate becomes an unpolarized one.
When |λ| > |λc| � 2.8ω⊥, the condensate presents a mixed
state and the two components have the same particle number, as
shown in figures 5(c) and (d) with λ = 3ω⊥. From the insets
(iii) and (iv) in figure 5(e) we can see that the momentum
distributions of two components are no longer equal to 0, but
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κ m

�
, 0

)
. The condensate experiences the transition from ZM

phase to PW phase.

3.2. The condensate with a strong harmonic trap

We know that the SO coupled BECs will emerge as VL
phases [12, 17–19] spontaneously in the strong trap region(
g̃ jk < 1

)
. Furthermore, Xu et al point out that the momentum

distributions of these VL phases may be three points, four
points or six points, around the ring of radius κ m

�
[18]. A

systematic understanding about which phase will emerge is
still elusive as a lot of previous results are obtained by solving
the coupled Gross–Pitaevskii equations numerically. We take
the parameters from [17] g̃11 = g̃22 = g̃ = 0.2, g̃12 = 0.3,

and κ = 20
√

�ω⊥/m. After numerical calculation we found
that the vortex lattice phase with three-point momentum
distribution has lower energy. Taking this phase as an example,
we will study the effect of ZM coupling on the VL phases
induced by SO coupling instead of rotation in the following.

When the ZM coupling is absent, the condensate with a
strong SO coupling presents a VA lattice in each component, as
shown in figure 6(d). Half of these vortices in one component
are filled with the density peaks of the other component,
forming HQV, and the sign of HQV is determined by the
vortex sign and the component in which the vortex resides.
In addition, the other half of the vortices in both components
are coincident with opposite sign. So the total density profile
is a VL rather than a smooth bell, and the relative phases in
these singularities have 4π difference. The formation of this
vortex lattice structure can be understood as a superposition of
three k points in momentum space as shown in figure 6(d). It
should be noted that the positions of these three points on the
ring of radius κ m

�
is not unique, since the symmetry is broken

spontaneously, i.e. ϕk = ϕ̄ + (l − 1) 2π
3 , (l = 1, 2, 3) , here

ϕk = arg(kx + iky) and ϕ̄ being arbitrary. In this section, we
choose ϕ̄ = 0, then the momentum distribution is determined,
as shown in figure 6(d).

From the effect of λ on the condensate with a weak
harmonic trap, we know that the sign of λ would not change the
particle density distribution, but only change the direction of
the phase gradient. That is because the two k points of particle
distribution in k-space are centre symmetric. The situation for
the condensate with a strong harmonic trap is complicated,
because the three k points of the momentum distribution
constitute a triangular structure, destroying the symmetry. So
there will be different profiles of the ground states for different
signs of λ. We first consider the situations of λ < 0. The
density profiles, the phases and the momentum distributions
are shown in figures 6(c), (b) and (a). With the increase of
|λ|, the particle distribution in k-space becomes imbalanced,
increased at the left two points and decreased at the right point.
When |λ| � 0.015ω⊥, only two are left from these three k
points, as shown in figure 6(c) with λ = −0.02ω⊥. We can see
that these two k points have the same x-value kx = − κm

2�
and

the opposite y-value ky = ±
√

3κm
2�

. It means that all particles
are condensated into a state with the same momentum in
x direction and opposite momentum in y direction, then a
stripe state with a modulation period of π/ky is obtained.
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Figure 7. Section views of the phase θ1 (a) along the y-axis and
(b) along the x-axis with λ = −0.02ω⊥ (red dashed–dotted line),
λ = −0.04ω⊥ (blue dashed line) and λ = −0.1ω⊥ (green solid line).

This stripe state is different from the one researched by Wang
et al, because their stripe direction is spontaneously chosen in
the x–y plane, but our stripe direction is fixed in x direction.
More importantly, their phase of the stripe state presents a
standing wave perpendicular to the stripe direction, but our
phase presents not only a standing wave perpendicular to the
stripe direction, but also a PW along the stripe direction,
as shown in figure 7, meaning nonzero superfluid velocity
along the stripe. As |λ| increases, the two k points gradually
close to each other along the circle k2

x + k2
y = m2κ2/�

2.
The wave number of the PW in x direction increases, and
the one of the standing wave in y direction decreases. So the
modulation period of the stripe increases and the one of the
PW decreases, as shown in figure 6(b) with λ = −0.04ω⊥
and figure 7. When |λ| � 0.06ω⊥, the ZM coupling drives the
condensate from a stripe state to a PW state, and all particles
distribute at

(−κ m
�
, 0

)
in k-space, as shown in figure 6(a) with

λ = −0.1ω⊥, agreeing with the effect of ZM coupling on the
single-particle ground state.

Next we consider the situations for λ > 0. The density
profiles, the phases and the momentum distributions are shown
in figures 6(e) and (f). In order to study the effect of λ on
VA pairs in more detail, we also plot the cross sections of
density profiles of the ψ1 component along the y direction at
x = 0 with different λ in figure 8. We can see that the density
barriers between the VA pairs are reduced and the VA pairs
are close to each other with the increase of λ. Meanwhile,
the coincident vortices located in different components are
deviated from each other. The momentum distribution at three
k points becomes imbalanced, increased at the k point on
the right and decreased at the other two points on the left.
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Figure 8. The cross sections of the density |ψ1|2 with g̃11 = g̃22 =
g̃ = 0.2, g̃12 = 0.3, and κ = 20

√
�ω⊥/m, for different λ along the

x-axis at y = 0. The black dotted circles indicate the region of VA
pairs. The vortex and antivortex are close to and annihilate each
other with the increase of λ.

When λ > 0.03ω⊥, the density barriers disappeared, so the
vortex and the antivortex slip into the same hole and eventually
annihilate, as shown in figure 6(e) with λ = 0.04ω⊥. From the
density profile of each component, we can see that the holes
still exist, but the singularities in the phase diagram vanish,
which means no vortex. So we name this new structure a
VFL. This state can be understood as an intermediate state
between the VL state and the PW state. At this point, the
particles still distribute at three points in k-space, but their
distribution on the left is too few to be observed. As λ increases

further, λ � 0.1ω⊥, the VFL disappears and the density profile
becomes smooth, meanwhile, all particles distribute at

(
κ m

�
, 0

)
in k-space and the phase becomes a PW, as shown in figure 6(f)
with λ = 0.2ω⊥. Noting that if the momentum distribution of
the initial vortex state has one peak on the left and two peaks
on the right, i.e. ϕ̄ = π

3 , all the scenarios presented in figure 6
would be inversed horizontally.

The pseudospin texture of the VL phase is shown in
figure 9(a) with λ = 0. This texture is the same as the
ones in the [17] if we exchange ψ1 and ψ2, and exchange
Sx and Sy. Figure 9(b) is an amplified local part of (a), and we
classify three kinds of textures labelled (i), (ii) and (iii), which
correspond to + HQV, −HQV and spin-2 texture, respectively.
The spin-2 textures are located at the position of the coincident
vortices with opposite sign that reside in different components,
with winding number −2. The projection of these vectors onto
the surface of a Bloch sphere is shown in figure 10(a). ±HQV
cover the Bloch sphere hemisphere once respectively, and spin-
2 texture wraps the Bloch sphere twice.

When the ZM coupling is present, the arrangement of
±HQV is changed, due to the distance of VA pairs decreasing,
as shown in figure 9(c) with λ = 0.03ω⊥. From figures 9(c)
and (d) we can see that the spin density vectors are squeezed
transversely and the spin textures are deformed compared to
the ones shown in figure 9(a). These spin density vectors
cover the Bloch sphere with a partial loss, i.e. they cover an
incomplete sphere as shown in figure 10(b) with λ = 0.02ω⊥
and (c) with λ = 0.03ω⊥, because of the effect of ZM coupling.
With the increase of λ, the transition from VL state to VFL
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Figure 9. (a) The vectorial plots of the pseudospin S projected onto the x–y plane corresponding to the ground state in figure 5(a) with
g̃11 = g̃22 = g̃ = 0.2, g̃12 = 0.3, κ = 20

√
�ω⊥/m, and λ = 0. Values of Sz are represented by linear levels from blue to red (−1 to 1). (b) An

amplified local part of (a). Here the regions of (i), (ii) and (iii) indicate the +HQV, −HQV and spin-2 texture, respectively. (c) The vectorial
plots of the pseudospin S projected onto the x–y plane with λ = 0.03ω⊥. (d) An amplified local part of (c). Corresponding to (a) and (b), the
spin density vectors pointing to the x direction are suppressed and the spin texture is deformed with the effect of ZM coupling.

9



J. Phys. B: At. Mol. Opt. Phys. 47 (2014) 115302 J Jin et al

(a) (b)

(c) (d)

Figure 10. The projections of pseudospin density vectors on the Bloch sphere for (a) λ = 0, (b) λ = 0.02ω⊥, (c) λ = 0.03ω⊥ and
(d) λ = 0.04ω⊥, indicating the suppression of the ZM coupling on the spin orientation. The colour scaling from blue to red means the values
of Sz from −1 to 1.

state is accompanied by a change of the covered Bloch sphere
from more than half of the sphere to less than half of the sphere,
as shown in figure 10(d) with λ = 0.04ω⊥. As λ � 0.1ω⊥,
the condensate presents the PW state and the corresponding
spin density vectors eventually narrow down to a point at the
surface of the Bloch sphere.

4. Experimental proposal

In real experiments, we can select two internal spin states
within the 39K BEC system |F = 1, m f = 0〉 and
|F = 1, m f = 1〉 labelled pseudospin up and pseudospin
down, respectively, in the weak trap region, as 39K has proven
to be a good candidate for realizing Feshbach resonance in
experiments [37, 38]. The condensate contains about 104

atoms. The trapping frequencies of the potential can be chosen
as {ω⊥, ωz} = 2π × {4.5, 22.5} Hz, and the scattering lengths
are adjusted as a11 = a22 ≈ 58aB, a12 ≈ 204aB (aB is the Bohr
radius) which are consistent with our previous dimensionless
interaction parameters g̃11 = g̃22 = 50, g̃12 = 175. When
the SO coupling strength is chosen as κ = 5

√
�ω⊥/m, with

increasing the ZM coupling strength from λ = 0 to 1.2ω⊥,

and finally to 2ω⊥, we can observe the condensate transitions
from stripe phase to PW phase by monitoring the density
profiles and phases of the condensate. When the SO coupling
strength is chosen as κ = 0.5

√
�ω⊥/m, we can observe the

transitions from ZM phase to PW phase with increasing the
ZM coupling strength from λ = 0 to 3ω⊥. In the strong
trap region, the trapping frequencies can also be chosen as
{ω⊥, ωz} = 2π × {4.5, 22.5} Hz, but the scattering lengths
are adjusted as a11 = a22 ≈ 0.26aB, a12 ≈ 0.38aB. Fixing
the SO coupling strength κ = 20

√
�ω⊥/m and adjusting the

strength of ZM coupling from λ = 0 to 0.04ω⊥, and then to
0.2ω⊥, we can observe the condensate transitions from a VL
state to a VFL state and then to a PW state. For the case of
λ < 0, adjusting the strength of ZM coupling from λ = 0 to
−0.02ω⊥, and then to −0.1ω⊥, we can observe the condensate
transitions from a VL state to a stripe state and finally to PW
state.

5. Conclusion

In summary, we have studied the transitions of ground
states induced by ZM coupling in pseudospin-1/2 Rashba
SO coupled BECs confined in a harmonic potential. We
have calculated the single-particle ground state without
considering the external trap and found that the presence of
the ZM coupling changes the ground state from an infinitely
degenerate state into a nondegenerate state. We have also
numerically studied the mean-field many-body ground states
of the condensates. For the SO coupled condensate with a
weak harmonic trap, the condensate exhibits a PW state, a
stripe state or a ZM state. For the stripe state, the amplitude of
the stripe decreases with the increase of ZM coupling, and this
stripe state is different from the ones mentioned in previous
works, because of the imbalanced particle distribution in
k-space. When the strength of ZM coupling exceeds a critical
value, the stripes disappear completely and the condensate
experiences the transition from the stripe state to the PW state.
The phase boundary between the PW phase and the stripe
phase is shifted. Moreover, the transition from the ZM state
to the PW state can also be realized by ZM coupling. So
performing a ZM coupling on the SO-coupled BECs is another
method to realize the transition from stripe phase or ZM phase
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to PW phase, besides adjusting the interatomic interactions
realized by Feshbach resonance.

We have also studied the ground state of a condensate
under a strong harmonic trap with or without ZM coupling.
When the ZM coupling is absent, the arrangement of the VA
pairs in both components leads to three kinds of spin textures:
±HQV and spin-2 texture. When the ZM coupling is present,
we have discussed the impacts of the sign of the effective
Rabi frequency on the structures of the ground states. When
λ > 0, the condensate experiences the transitions from the VL
state to the VFL state and then to the PW state. Furthermore,
when λ < 0, the condensate experiences the transitions from
the VL state to the stripe state and then to the PW state.
The direction of the PW is opposite for the different sign
of λ, and the stripe state mentioned here is different from
the ones mentioned in previous works, because of its nonzero
superfluid velocity along the stripe. We have developed a new
way to manipulate the SO-coupled BEC system. This work will
make it possible to simulate more interesting problems in more
general quantum many-body systems, such as the half-vortex
state for quantum information storage and the explorations of
new phases of condensed matter.
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